Sunday, 5 February 2017

Comparer Les Techniques De Régression Linéaire Aux Moyennes Mobiles Et De Lissage

Prévision par Smoothing Techniques Ce site fait partie des objets d'apprentissage JavaScript E-Labs pour la prise de décision. Les autres JavaScript de cette série sont classés dans différents domaines d'application dans la section MENU de cette page. Une série chronologique est une séquence d'observations qui sont ordonnées dans le temps. Inherente à la collecte de données prises dans le temps est une forme de variation aléatoire. Il existe des procédés pour réduire l'annulation de l'effet dû à une variation aléatoire. Les techniques largement utilisées sont le lissage. Ces techniques, lorsqu'elles sont correctement appliquées, révèlent plus clairement les tendances sous-jacentes. Saisissez la série chronologique en ordre, en commençant par le coin supérieur gauche et le ou les paramètres, puis cliquez sur le bouton Calculer pour obtenir une prévision à une période. Les cases en blanc ne sont pas incluses dans les calculs mais les zéros sont. Lorsque vous entrez vos données pour passer d'une cellule à une cellule dans la matrice de données, utilisez la touche Tabulation et non la flèche ou entrez les touches. Caractéristiques des séries temporelles, qui pourraient être révélées en examinant son graphique. Avec les valeurs prévues, et le comportement des résidus, la prévision des conditions de modélisation. Moyennes mobiles: Les moyennes mobiles se classent parmi les techniques les plus populaires pour le prétraitement des séries chronologiques. Ils sont utilisés pour filtrer le bruit blanc aléatoire à partir des données, pour rendre la série temporelle plus lisse ou même pour souligner certains composants informatifs contenus dans la série chronologique. Lissage exponentiel: Il s'agit d'un schéma très populaire pour produire une série chronologique lissée. Alors que dans les moyennes mobiles les observations passées sont pondérées également, le lissage exponentiel attribue des poids exponentiellement décroissants à mesure que l'observation vieillit. En d'autres termes, les observations récentes donnent relativement plus de poids dans les prévisions que les observations plus anciennes. Double lissage exponentiel est mieux à la manipulation des tendances. Triple Exponential Smoothing est mieux à la manipulation des tendances parabole. Une moyenne mobile exponentiellement pondérée avec une constante de lissage a. Correspond approximativement à une moyenne mobile simple de longueur (c'est-à-dire période) n, où a et n sont liés par: a 2 (n1) OR n (2 - a) a. Ainsi, par exemple, une moyenne mobile exponentiellement pondérée avec une constante de lissage égale à 0,1 correspondrait approximativement à une moyenne mobile de 19 jours. Et une moyenne mobile simple de 40 jours correspondrait approximativement à une moyenne mobile exponentiellement pondérée avec une constante de lissage égale à 0,04878. Holts Linear Exponential Smoothing: Supposons que la série temporelle soit non saisonnière mais affiche la tendance. Holts méthode estime à la fois le niveau actuel et la tendance actuelle. Notons que la moyenne mobile simple est un cas particulier du lissage exponentiel en définissant la période de la moyenne mobile sur la partie entière de (2-Alpha) Alpha. Pour la plupart des données commerciales, un paramètre Alpha inférieur à 0,40 est souvent efficace. Cependant, on peut effectuer une recherche de grille de l'espace des paramètres, avec 0,1 à 0,9, avec des incréments de 0,1. Ensuite, le meilleur alpha a la plus petite erreur absolue moyenne (erreur MA). Comment comparer plusieurs méthodes de lissage: Bien qu'il existe des indicateurs numériques pour évaluer la précision de la technique de prévision, l'approche la plus répandue consiste à utiliser la comparaison visuelle de plusieurs prévisions pour évaluer leur exactitude et choisir parmi les différentes méthodes de prévision. Dans cette approche, on doit tracer (en utilisant par exemple Excel) sur le même graphe les valeurs d'origine d'une variable de série temporelle et les valeurs prédites à partir de plusieurs méthodes de prévision différentes, facilitant ainsi une comparaison visuelle. Vous pouvez utiliser les prévisions passées par Smoothing Techniques JavaScript pour obtenir les valeurs de prévisions antérieures basées sur des techniques de lissage qui n'utilisent qu'un seul paramètre. Holt et Winters utilisent deux et trois paramètres, respectivement, donc il n'est pas facile de sélectionner les valeurs optimales, voire presque optimales par essai et les erreurs pour les paramètres. Le lissage exponentiel simple met l'accent sur la perspective à courte portée qu'il définit le niveau à la dernière observation et est basé sur la condition qu'il n'y a pas de tendance. La régression linéaire, qui correspond à une ligne de moindres carrés aux données historiques (ou aux données historiques transformées), représente la longue portée, conditionnée par la tendance de base. Le lissage linéaire linéaire de Holts capture des informations sur la tendance récente. Les paramètres dans le modèle de Holts sont les niveaux-paramètres qui devraient être diminués quand la quantité de variation de données est grande et les tendances-paramètre devraient être augmentés si la direction de tendance récente est soutenue par le causal certains facteurs. Prévision à court terme: Notez que chaque JavaScript sur cette page fournit une prévision à un pas. Obtenir une prévision en deux étapes. Ajoutez simplement la valeur prévue à la fin de vos données chronologiques et cliquez sur le même bouton Calculer. Vous pouvez répéter ce processus pour quelques reprises afin d'obtenir les prévisions à court terme nécessaires. Données lissantes supprime la variation aléatoire et montre les tendances et les composantes cycliques Inhérente dans la collecte de données prises dans le temps est une forme de variation aléatoire. Il existe des procédés pour réduire l'annulation de l'effet dû à une variation aléatoire. Une technique souvent utilisée dans l'industrie est le lissage. Cette technique, lorsqu'elle est correctement appliquée, révèle plus clairement la tendance sous-jacente, les composantes saisonnières et cycliques. Il existe deux groupes distincts de méthodes de lissage Méthodes de moyenne Méthodes de lissage exponentielles Prendre des moyennes est le moyen le plus simple de lisser les données Nous allons d'abord étudier certaines méthodes de calcul de la moyenne, comme la moyenne simple de toutes les données passées. Un gestionnaire d'un entrepôt veut savoir combien un fournisseur typique livre en unités de 1000 dollars. Heshe prélève au hasard un échantillon de 12 fournisseurs, obtenant les résultats suivants: Moyenne ou moyenne calculée des données 10. Le gestionnaire décide d'utiliser cette estimation comme estimation des dépenses d'un fournisseur type. Est-ce une bonne ou mauvaise estimation L'erreur quadratique moyenne est un moyen de juger de la qualité d'un modèle? Nous calculons l'erreur quadratique moyenne. Le montant exact de l'erreur dépensé moins le montant estimé. L'erreur au carré est l'erreur ci-dessus, au carré. Le SSE est la somme des erreurs au carré. Le MSE est la moyenne des erreurs au carré. Les résultats sont: Erreur et carré Erreurs L'estimation 10 La question se pose: pouvons-nous utiliser la moyenne pour prévoir le revenu si nous soupçonnons une tendance Un regard sur le graphique ci-dessous montre clairement que nous ne devrions pas le faire. La moyenne moyenne de toutes les observations passées est seulement une estimation utile pour la prévision quand il n'y a pas de tendances. S'il ya des tendances, utilisez des estimations différentes qui tiennent compte de la tendance. La moyenne pèse toutes les observations passées également. Par exemple, la moyenne des valeurs 3, 4, 5 est 4. On sait, bien sûr, qu'une moyenne est calculée en additionnant toutes les valeurs et en divisant la somme par le nombre de valeurs. Une autre façon de calculer la moyenne est d'ajouter chaque valeur divisée par le nombre de valeurs, ou 33 43 53 1 1.3333 1.6667 4. Le multiplicateur 13 est appelé le poids. En général: bar fraction somm de gauche (frac droite) x1 gauche (frac droite) x2,. ,, Gauche (frac droite) xn. 1.3 Comprendre les niveaux de prévision et les méthodes Vous pouvez générer des prévisions de détail (élément unique) et des prévisions sommaires (ligne de produits) qui reflètent les modèles de demande de produit. Le système analyse les ventes passées pour calculer les prévisions en utilisant 12 méthodes de prévision. Les prévisions incluent des informations détaillées au niveau de l'article et des informations de niveau supérieur sur une succursale ou l'entreprise dans son ensemble. 3.1 Critères d'évaluation de la performance des prévisions En fonction de la sélection des options de traitement et des tendances et schémas des données sur les ventes, certaines méthodes de prévision ont un meilleur rendement que d'autres pour un ensemble de données historiques donné. Une méthode de prévision appropriée pour un produit peut ne pas convenir à un autre produit. Vous pouvez constater qu'une méthode de prévision qui fournit de bons résultats à un stade du cycle de vie d'un produit demeure appropriée tout au long du cycle de vie. Vous pouvez choisir entre deux méthodes pour évaluer le rendement actuel des méthodes de prévision: Pourcentage de précision (POA). Déviation absolue moyenne (MAD). Ces deux méthodes d'évaluation des performances requièrent des données de ventes historiques pour une période que vous spécifiez. Cette période est appelée période de blocage ou période de meilleur ajustement. Les données de cette période servent de base pour recommander la méthode de prévision à utiliser pour réaliser la projection de prévision suivante. Cette recommandation est spécifique à chaque produit et peut changer d'une génération de prévision à l'autre. 3.1.1 Meilleur ajustement Le système recommande la meilleure prévision d'ajustement en appliquant les méthodes de prévision sélectionnées à l'historique des commandes passées et en comparant la simulation de prévision à l'historique réel. Lorsque vous générez une prévision de meilleur ajustement, le système compare les historiques des commandes client à des prévisions pour une période donnée et calcule la précision avec laquelle chaque méthode de prévision différente prédit les ventes. Ensuite, le système recommande la prévision la plus précise comme la meilleure solution. Ce graphique illustre les meilleures prévisions d'ajustement: Figure 3-1 Prévision des meilleures prévisions Le système utilise cette séquence d'étapes pour déterminer le meilleur ajustement: Utiliser chaque méthode spécifiée pour simuler une prévision pour la période de blocage. Comparer les ventes réelles aux prévisions simulées pour la période d'indisponibilité. Calculer le POA ou le MAD pour déterminer quelle méthode de prévision correspond le plus exactement aux ventes réelles passées. Le système utilise POA ou MAD, en fonction des options de traitement que vous sélectionnez. Recommander une meilleure prévision d'ajustement par le POA qui est le plus proche de 100 pour cent (plus ou moins) ou le MAD qui est le plus proche de zéro. 3.2 Méthodes de prévision JD Edwards EnterpriseOne utilise 12 méthodes de prévision quantitative et indique quelle méthode est la mieux adaptée à la situation de prévision. Cette section traite de ce qui suit: Méthode 1: Pourcentage sur l'année dernière. Méthode 2: Pourcentage calculé sur l'année dernière. Méthode 3: Année passée à cette année. Méthode 4: Moyenne mobile. Méthode 5: Approximation linéaire. Méthode 6: Régression des moindres carrés. Méthode 7: Approximation du deuxième degré. Méthode 8: Méthode flexible. Méthode 9: Moyenne mobile pondérée. Méthode 10: Lissage linéaire. Méthode 11: Lissage exponentiel. Méthode 12: lissage exponentiel avec tendance et saisonnalité. Spécifiez la méthode que vous souhaitez utiliser dans les options de traitement du programme Prévisions de génération (R34650). La plupart de ces méthodes fournissent un contrôle limité. Par exemple, vous pouvez spécifier le poids des données historiques récentes ou la plage de dates des données historiques utilisées dans les calculs. Les exemples du guide indiquent la procédure de calcul pour chacune des méthodes de prévision disponibles, compte tenu d'un ensemble identique de données historiques. Les exemples de méthode dans le guide utilisent une partie ou la totalité de ces ensembles de données, qui sont des données historiques des deux dernières années. Les projections de prévision vont à l'année prochaine. Ces données sur l'historique des ventes sont stables, avec de légères hausses saisonnières en juillet et en décembre. Ce modèle est caractéristique d'un produit mature qui pourrait s'approcher de l'obsolescence. 3.2.1 Méthode 1: Pourcentage sur l'année dernière Cette méthode utilise la formule Pourcentage sur l'année dernière pour multiplier chaque période de prévision par l'augmentation ou la diminution en pourcentage spécifiée. Pour prévoir la demande, cette méthode nécessite le nombre de périodes pour le meilleur ajustement plus un an de l'historique des ventes. Cette méthode est utile pour prévoir la demande d'articles saisonniers avec croissance ou déclin. 3.2.1.1 Exemple: Méthode 1: Pourcentage sur l'année dernière La formule Pourcentage sur l'année dernière multiplie les données de ventes de l'année précédente par un facteur que vous spécifiez, puis projette le résultat au cours de l'année suivante. Cette méthode pourrait être utile dans la budgétisation pour simuler l'incidence d'un taux de croissance spécifié ou lorsque l'historique des ventes a une composante saisonnière importante. Spécifications prévisionnelles: Facteur de multiplication. Par exemple, spécifiez 110 dans l'option de traitement pour augmenter les données d'historique des ventes des années précédentes de 10%. Historique des ventes requis: un an pour le calcul de la prévision, plus le nombre de périodes nécessaires pour évaluer les performances de prévision (périodes de meilleur ajustement) que vous spécifiez. Ce tableau est l'historique utilisé dans le calcul de la prévision: la prévision de février est égale à 117 fois 1,1 128,7 arrondi à 129. La prévision de mars est égale à 115 fois 1,1 126,5 arrondi à 127. 3.2.2 Méthode 2: Calcul calculé sur l'année dernière Cette méthode utilise le pourcentage calculé Formule de l'année dernière pour comparer les ventes passées de périodes spécifiées aux ventes des mêmes périodes de l'année précédente. Le système détermine une augmentation ou une diminution en pourcentage, puis multiplie chaque période par le pourcentage pour déterminer la prévision. Pour prévoir la demande, cette méthode nécessite le nombre de périodes d'historique des commandes clients plus un an de l'historique des ventes. Cette méthode est utile pour prévoir la demande à court terme d'articles saisonniers avec croissance ou déclin. 3.2.2.1 Exemple: Méthode 2: Pourcentage calculé par rapport à l'année dernière La formule calculée pour cent par rapport à l'année dernière multiplie les données de ventes de l'année précédente par un facteur calculé par le système, puis projette ce résultat pour l'année suivante. Cette méthode pourrait être utile pour projeter l'effet d'étendre le taux de croissance récent d'un produit dans l'année suivante tout en préservant un modèle saisonnier qui est présent dans l'histoire des ventes. Spécifications prévisionnelles: Gamme d'historique des ventes à utiliser pour calculer le taux de croissance. Par exemple, spécifiez n égal à 4 dans l'option de traitement pour comparer l'historique des ventes pour les quatre dernières périodes à ces mêmes quatre périodes de l'année précédente. Utilisez le ratio calculé pour faire la projection pour l'année suivante. Historique des ventes requis: Un an pour calculer la prévision plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). Ce tableau est l'historique utilisé dans le calcul de la prévision, étant donné n 4: la prévision de février est égale à 117 fois 0,9766 114,26 arrondie à 114. La prévision de mars est égale à 115 fois 0,9766 112,31 arrondie à 112. 3.2.3 Méthode 3: Dernières années pour les prochaines années. Pour prévoir la demande, cette méthode nécessite le nombre de périodes le mieux adapté plus un an de l'historique des commandes client. Cette méthode est utile pour prévoir la demande de produits matures avec une demande de niveau ou une demande saisonnière sans tendance. 3.2.3.1 Exemple: Méthode 3: Année dernière à cette année La formule Année dernière à cette année copie les données de ventes de l'année précédente à l'année suivante. Cette méthode pourrait être utile dans la budgétisation pour simuler les ventes au niveau actuel. Le produit est mature et n'a pas de tendance sur le long terme, mais il peut exister un schéma de demande saisonnière important. Spécifications prévisionnelles: Aucune. Historique des ventes requis: Un an pour calculer la prévision plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). Ce tableau est l'historique utilisé pour le calcul de la prévision: la prévision de janvier est égale à janvier de l'année dernière avec une valeur de prévision de 128. La prévision de février est égale à février de l'année dernière avec une valeur de prévision de 117. La prévision de mars équivaut à mars de l'année dernière avec une valeur de prévision de 115. 3.2.4 Méthode 4: Moyenne mobile Cette méthode utilise la formule Moyenne mobile pour faire la moyenne du nombre de périodes spécifié pour projeter la période suivante. Vous devriez le recalculer souvent (mensuel, ou au moins trimestriel) pour refléter l'évolution du niveau de la demande. Pour prévoir la demande, cette méthode nécessite le nombre de périodes le mieux adapté, plus le nombre de périodes de l'historique des commandes client. Cette méthode est utile pour prévoir la demande de produits matures sans tendance. 3.2.4.1 Exemple: Méthode 4: Moyenne mobile de déplacement La moyenne mobile (MA) est une méthode populaire pour calculer la moyenne des résultats de l'historique des ventes récentes afin de déterminer une projection à court terme. La méthode de prévision MA est à la traîne des tendances. Les biais prévisionnels et les erreurs systématiques se produisent lorsque l'historique des ventes de produits présente une forte tendance ou des tendances saisonnières. Cette méthode fonctionne mieux pour les prévisions à court terme de produits matures que pour les produits en phase de croissance ou d'obsolescence du cycle de vie. Spécifications prévisionnelles: n est égal au nombre de périodes d'historique des ventes à utiliser dans le calcul de la prévision. Par exemple, spécifiez n 4 dans l'option de traitement pour utiliser les quatre dernières périodes comme base pour la projection dans la période suivante. Une grande valeur pour n (telle que 12) nécessite plus d'historique des ventes. Il en résulte une prévision stable, mais est lent à reconnaître les changements dans le niveau des ventes. Inversement, une petite valeur pour n (comme 3) est plus rapide pour répondre aux variations du niveau des ventes, mais la prévision pourrait fluctuer si largement que la production ne peut pas répondre aux variations. Historique des ventes requis: n plus le nombre de périodes nécessaires à l'évaluation des performances prévues (périodes de meilleur ajustement). Ce tableau est l'historique utilisé dans le calcul de la prévision: la prévision de février est égale à (114 119 137 125) 4 123.75 arrondie à 124. La prévision de mars égale (119 137 125 124) 4 126,25 arrondie à 126. 3.2.5 Méthode 5: Approximation linéaire Cette méthode Utilise la formule d'approximation linéaire pour calculer une tendance à partir du nombre de périodes de l'historique des commandes client et pour projeter cette tendance à la prévision. Vous devez recalculer la tendance mensuellement pour détecter les changements dans les tendances. Cette méthode exige le nombre de périodes de meilleur ajustement plus le nombre de périodes spécifiées de l'historique des commandes client. Cette méthode est utile pour prévoir la demande de nouveaux produits ou des produits dont les tendances positives ou négatives sont cohérentes et qui ne sont pas dues aux fluctuations saisonnières. 3.2.5.1 Exemple: Méthode 5: Approximation linéaire L'approximation linéaire calcule une tendance basée sur deux points de données d'historique des ventes. Ces deux points définissent une ligne de tendance droite qui est projetée dans l'avenir. Utilisez cette méthode avec prudence car les prévisions à long terme sont exploitées par de petits changements en seulement deux points de données. Spécifications de prévision: n est égal au point de données de l'historique des ventes qui est comparé au point de données le plus récent pour identifier une tendance. Par exemple, spécifiez n 4 pour utiliser la différence entre décembre (données les plus récentes) et août (quatre périodes avant décembre) comme base de calcul de la tendance. Historique des ventes minimum requis: n plus 1 plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). Ce tableau est l'historique utilisé dans le calcul de la prévision: Prévision de janvier Décembre de l'année précédente 1 (Tendance) qui est égal à 137 (1 fois 2) 139. Prévision de février Décembre de l'année précédente 1 (Tendance) qui est 137 (2 fois 2) 141. La méthode de régression des moindres carrés (LSR) dérive une équation décrivant une relation de droite entre les données de ventes historiques Et le passage du temps. LSR ajoute une ligne à la plage de données sélectionnée de sorte que la somme des carrés des différences entre les points de données de vente réels et la ligne de régression soient minimisées. La prévision est une projection de cette droite vers l'avenir. Cette méthode nécessite l'historique des données de vente pour la période qui est représentée par le nombre de périodes le mieux adapté plus le nombre spécifié de périodes de données historiques. L'exigence minimale est deux points de données historiques. Cette méthode est utile pour prévoir la demande lorsqu'une tendance linéaire est dans les données. 3.2.6.1 Exemple: Méthode 6: régression linéaire de régression des moindres carrés, ou régression des moindres carrés (LSR), est la méthode la plus populaire pour identifier une tendance linéaire dans les données de ventes historiques. La méthode calcule les valeurs de a et b à utiliser dans la formule: Cette équation décrit une droite, où Y représente les ventes et X représente le temps. La régression linéaire est lente à reconnaître les points de retournement et les changements de fonction d'étape de la demande. La régression linéaire correspond à une droite aux données, même si les données sont saisonnières ou mieux décrites par une courbe. Lorsque les données de l'historique des ventes suivent une courbe ou présentent un schéma saisonnier fort, des biais prévisionnels et des erreurs systématiques se produisent. Spécifications de prévision: n correspond aux périodes de l'historique des ventes qui seront utilisées pour calculer les valeurs de a et b. Par exemple, spécifiez n 4 pour utiliser l'historique de septembre à décembre comme base pour les calculs. Lorsque des données sont disponibles, un n plus grand (tel que n 24) serait habituellement utilisé. LSR définit une ligne pour aussi peu que deux points de données. Pour cet exemple, une petite valeur de n (n 4) a été choisie pour réduire les calculs manuels requis pour vérifier les résultats. Historique des ventes minimum requis: n périodes plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). Cette méthode est utilisée dans le calcul de la prévision: la prévision de mars est égale à 119,5 (7 fois 2,3) 135,6, arrondie à 136. 3.2.7 Méthode 7: Approximation du deuxième degré Pour utiliser les prévisions, cette méthode utilise la formule d'approximation du deuxième degré pour tracer une courbe Qui est basé sur le nombre de périodes de l'histoire des ventes. Cette méthode nécessite le nombre de périodes le mieux adapté plus le nombre de périodes de l'historique des commandes de vente fois trois. Cette méthode n'est pas utile pour prévoir la demande pour une période de long terme. 3.2.7.1 Exemple: Méthode 7: Approximation du second degré La régression linéaire détermine les valeurs de a et b dans la formule de prévision Y a b X dans le but d'ajuster une ligne droite aux données de l'historique des ventes. L'approximation du deuxième degré est similaire, mais cette méthode détermine les valeurs de a, b et c dans cette formule de prévision: Y a b X c X 2 L'objectif de cette méthode est d'adapter une courbe aux données de l'historique des ventes. Cette méthode est utile lorsqu'un produit est en transition entre les étapes du cycle de vie. Par exemple, lorsqu'un nouveau produit passe de l'introduction aux étapes de croissance, la tendance des ventes pourrait s'accélérer. En raison du terme du second ordre, la prévision peut rapidement approcher l'infini ou tomber à zéro (selon que le coefficient c est positif ou négatif). Cette méthode n'est utile qu'à court terme. Spécifications prévisionnelles: la formule trouve a, b et c pour adapter une courbe à exactement trois points. Vous spécifiez n, le nombre de périodes de données à accumuler dans chacun des trois points. Dans cet exemple, n 3. Les données réelles des ventes d'avril à juin sont combinées au premier point, Q1. Juillet à Septembre sont ajoutés pour créer Q2, et d'Octobre à Décembre somme à Q3. La courbe est ajustée aux trois valeurs Q1, Q2 et Q3. Historique des ventes requis: 3 périodes n de calcul de la prévision plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). Ce tableau est l'historique utilisé pour le calcul de la prévision: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun) qui correspond à 125 129 137 384 Q2 (Juil) (Août) (Sep) ce qui équivaut à 140 129 L'étape suivante consiste à calculer les trois coefficients a, b et c à utiliser dans la formule de prévision Y ab X c X 2. Q1, Q2 et Q3 sont présentés sur le graphique, où le temps est tracé sur l'axe horizontal. Q1 représente le total des ventes historiques pour avril, mai et juin et est tracée à X 1 Q2 correspond à Juillet à Septembre T3 correspond à Octobre à Décembre et Q4 Janvier à Mars. Ce graphique illustre le tracé de Q1, Q2, Q3 et Q4 pour une approximation de second degré: Figure 3-2 Tracer Q1, Q2, Q3 et Q4 pour une approximation de second degré Trois équations décrivent les trois points du graphe: (1) Q1 (3) Q3 a bX cX 2 où X 3 (Q3 a 3b 9c) Résoudre les trois équations simultanément (2) et résoudre pour b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Remplacer cette équation pour B dans l'équation (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Enfin, substituez ces équations pour a et b dans l'équation (1): (1) Q3 ndash La méthode d'approximation du second degré calcule a, b et c comme suit: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 fois ndash23) 16 69 85 c (Q3 ndash Q2) 370 ndash 400) (384 ndash 400) 2 ndash23 Il s'agit d'un calcul de la prévision d'approximation du second degré: Y a bX cX 2 322 85X (ndash23) (X2) Lorsque X4, Q4 322 340 ndash 368 294. La prévision est égale à 294 3 98 par période. Lorsque X 5, Q5 322 425 ndash 575 172. La prévision équivaut à 172 3 58,33 arrondi à 57 par période. Lorsque X 6, Q 6 322 510 ndash 828 4. La prévision est égale à 4 3 1,33 arrondie à 1 par période. 3.2.8 Méthode 8: Méthode flexible Cette méthode vous permet de sélectionner le nombre le mieux adapté de périodes de l'historique des commandes clients qui commence n mois avant la date de début prévue et à Appliquer un pourcentage d'augmentation ou de diminution du facteur de multiplication avec lequel modifier la prévision. Cette méthode est similaire à Méthode 1, pourcentage sur l'année dernière, sauf que vous pouvez spécifier le nombre de périodes que vous utilisez comme base. Selon ce que vous sélectionnez comme n, cette méthode requiert la meilleure période d'ajustement plus le nombre de périodes de données de ventes qui est indiqué. Cette méthode est utile pour prévoir la demande pour une tendance planifiée. 3.2.8.1 Exemple: Méthode 8: Méthode flexible La méthode flexible (en pourcentage sur n mois avant) est semblable à la méthode 1, pourcentage par rapport à l'année dernière. Les deux méthodes multiplient les données de ventes d'une période antérieure par un facteur spécifié par vous, puis projetent ce résultat dans le futur. Dans la méthode Pourcentage sur l'année dernière, la projection est basée sur les données de la même période de l'année précédente. Vous pouvez également utiliser la méthode flexible pour spécifier une période, autre que la même période de l'année précédente, à utiliser comme base pour les calculs. Facteur de multiplication. Par exemple, spécifiez 110 dans l'option de traitement pour augmenter les données précédentes de l'historique des ventes de 10%. Période de base. Par exemple, n 4 fait que la première prévision est basée sur les données de vente en septembre de l'année dernière. Historique des ventes minimum requis: le nombre de périodes revenant à la période de base plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). 3.2.9 Méthode 9: Moyenne mobile pondérée La formule Moyenne mobile pondérée est semblable à la méthode 4, formule Moyenne mobile, car elle fait la moyenne de l'historique des ventes des mois précédents pour projeter l'historique des ventes des prochains mois. Cependant, avec cette formule, vous pouvez affecter des pondérations pour chacune des périodes précédentes. Cette méthode requiert le nombre de périodes pondérées choisies plus le nombre de périodes correspondant aux données les mieux adaptées. Semblable à la moyenne mobile, cette méthode est à la traîne des tendances de la demande, donc cette méthode n'est pas recommandée pour les produits avec des tendances fortes ou de la saisonnalité. Cette méthode est utile pour prévoir la demande pour les produits matures avec une demande relativement relative. 3.2.9.1 Exemple: Méthode 9: moyenne mobile pondérée La méthode de moyenne mobile pondérée (AMM) est semblable à la méthode 4, moyenne mobile (EM). Toutefois, vous pouvez affecter des poids inégaux aux données historiques lors de l'utilisation de WMA. La méthode calcule une moyenne pondérée de l'historique des ventes récentes pour arriver à une projection à court terme. Les données plus récentes sont habituellement attribuées à un poids plus important que les données plus anciennes, de sorte que WMA est plus sensible aux changements dans le niveau des ventes. Toutefois, les biais prévisionnels et les erreurs systématiques se produisent lorsque l'historique des ventes de produits présente des tendances fortes ou des tendances saisonnières. Cette méthode fonctionne mieux pour les prévisions à court terme de produits matures que pour les produits en phase de croissance ou d'obsolescence du cycle de vie. Le nombre de périodes de l'historique des ventes (n) à utiliser dans le calcul des prévisions. Par exemple, spécifiez n 4 dans l'option de traitement pour utiliser les quatre dernières périodes comme base pour la projection dans la période suivante. Une grande valeur pour n (telle que 12) nécessite plus d'historique des ventes. Une telle valeur donne lieu à une prévision stable, mais il est lent de reconnaître les variations du niveau des ventes. Inversement, une petite valeur pour n (comme 3) réagit plus rapidement aux variations du niveau des ventes, mais la prévision peut fluctuer si largement que la production ne peut pas répondre aux variations. Le nombre total de périodes pour l'option de traitement rdquo14 - périodes à inclure ne doit pas dépasser 12 mois. Le poids attribué à chacune des périodes de données historiques. Les poids attribués doivent totaliser 1,00. Par exemple, lorsque n 4, assigner des poids de 0,50, 0,25, 0,15 et 0,10 avec les données les plus récentes recevant le plus grand poids. Historique des ventes minimum requis: n plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). Ce tableau est l'historique utilisé dans le calcul de la prévision: la prévision de janvier est égale à (131 fois 0.10) (114 fois 0,15) (119 fois 0,25) (137 fois 0.50) (0,10 0,15 0,25 0,50) 128,45 arrondie à 128. Prévision de février égale (114 fois (128 fois 0.50) (128 fois 0.50) (128 fois 0.50) 1 127.5 arrondi à 128. La prévision de mars est égale (119 fois 0.10) (137 fois 0.15) (128 fois 0.25) (128 fois 0.50) 1 128.45 arrondi à 128. 3.2.10 Méthode 10: Lissage linéaire Cette méthode calcule une moyenne pondérée des données de ventes passées. Dans le calcul, cette méthode utilise le nombre de périodes d'historique des commandes client (de 1 à 12) indiquées dans l'option de traitement. Le système utilise une progression mathématique pour peser les données dans la plage allant du premier (poids le plus faible) au dernier (le plus de poids). Ensuite, le système projette cette information à chaque période de la prévision. Cette méthode nécessite le meilleur ajustement des mois, plus l'historique des commandes client pour le nombre de périodes spécifié dans l'option de traitement. 3.2.10.1 Exemple: Méthode 10: Lissage linéaire Cette méthode est similaire à la Méthode 9, WMA. Cependant, au lieu d'attribuer arbitrairement des pondérations aux données historiques, une formule est utilisée pour attribuer des poids qui diminuent de façon linéaire et forment une somme de 1,00. La méthode calcule ensuite une moyenne pondérée des historiques de ventes récents pour arriver à une projection à court terme. Comme toutes les techniques de prévision linéaire des moyennes mobiles, le biais de prévision et les erreurs systématiques se produisent lorsque l'historique des ventes du produit présente une forte tendance ou des modèles saisonniers. Cette méthode fonctionne mieux pour les prévisions à court terme de produits matures que pour les produits en phase de croissance ou d'obsolescence du cycle de vie. N est égal au nombre de périodes d'historique des ventes à utiliser dans le calcul de la prévision. Par exemple, spécifiez n égal à 4 dans l'option de traitement pour utiliser les quatre dernières périodes comme base pour la projection dans la période suivante. Le système attribue automatiquement les pondérations aux données historiques qui diminuent de façon linéaire et totalisent 1,00. Par exemple, lorsque n est égal à 4, le système attribue des poids de 0,4, 0,3, 0,2 et 0,1, les données les plus récentes recevant le poids le plus élevé. Historique des ventes minimum requis: n plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). 3.2.11 Méthode 11: Lissage exponentiel Cette méthode calcule une moyenne lissée qui devient une estimation représentant le niveau général des ventes sur les périodes de données historiques sélectionnées. Cette méthode nécessite l'historique des données de vente pour la période de temps qui est représentée par le nombre de périodes les mieux ajustées plus le nombre de périodes de données historiques qui sont spécifiées. L'exigence minimale est de deux périodes de données historiques. Cette méthode est utile pour prévoir la demande lorsqu'aucune tendance linéaire n'est présente dans les données. 3.2.11.1 Exemple: Méthode 11: Lissage exponentiel Cette méthode est similaire à la Méthode 10, Lissage linéaire. Dans Linear Smoothing, le système attribue des poids qui diminuent linéairement aux données historiques. Dans Exponential Smoothing, le système attribue des poids qui décroissent exponentiellement. La prévision est une moyenne pondérée des ventes réelles de la période précédente et des prévisions de la période précédente. La prévision est une moyenne pondérée des ventes réelles de la période précédente et des prévisions de la période précédente. Alpha est le poids qui est appliqué aux ventes réelles pour la période précédente. (1 ndash alpha) est le poids qui est appliqué à la prévision pour la période précédente. Les valeurs pour l'alpha vont de 0 à 1 et tombent habituellement entre 0,1 et 0,4. La somme des poids est de 1,00 (alpha (1 ndash alpha) 1). Vous devez affecter une valeur pour la constante de lissage, alpha. Si vous n'attribuez pas de valeur à la constante de lissage, le système calcule une valeur supposée basée sur le nombre de périodes de l'historique des ventes spécifié dans l'option de traitement. Alpha est égal à la constante de lissage qui est utilisée pour calculer la moyenne lissée pour le niveau général ou l'ampleur des ventes. Les valeurs de l'intervalle alpha vont de 0 à 1. n est égale à la plage des données de l'historique des ventes à inclure dans les calculs. Généralement, un an de données de l'historique des ventes est suffisant pour estimer le niveau général des ventes. Pour cet exemple, une petite valeur de n (n 4) a été choisie pour réduire les calculs manuels requis pour vérifier les résultats. Exponential Smoothing peut générer une prévision basée sur un point de données historiques. Historique des ventes minimum requis: n plus le nombre de périodes nécessaires pour évaluer le rendement prévu (périodes de meilleur ajustement). Méthode 12: Lissage exponentiel avec tendance et saisonnalité Cette méthode calcule une tendance, un indice saisonnier et une moyenne exponentiellement lissée de l'historique des commandes client. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. Cependant, la Méthode 12 comprend également un terme dans l'équation de prévision pour calculer une tendance lissée. The forecast is composed of a smoothed average that is adjusted for a linear trend. Lorsque spécifié dans l'option de traitement, la prévision est également ajustée en fonction de la saisonnalité. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD est une mesure de l'erreur de prévision. Le POA est une mesure du biais de prévision. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD est une mesure de l'ampleur moyenne des erreurs à attendre, compte tenu d'une méthode de prévision et de l'historique des données. Comme les valeurs absolues sont utilisées dans le calcul, les erreurs positives n'annulent pas les erreurs négatives. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. Lorsque les prévisions sont constamment trop élevées, les stocks s'accumulent et les coûts d'inventaire augmentent. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. Dans les services, l'ampleur des erreurs de prévision est généralement plus importante que le biais prévu. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.


No comments:

Post a Comment